Non-CES Models of Monopolistic Competition

ECON245 - Winter 24

Modeling market power

- Workhorse models of heterogeneous firms feature

1. CES demand
2. Monopolistic competition

- non-starter: markups are (i) homogeneous and (ii) exogenous

$$
p_{i t}=\frac{\sigma}{\sigma-1} m c_{i t}
$$

- two (immediate) ways out

1. maintain CES demand, assume oligopoly
2. non-CES demand, maintain monopolistic competition

Special Features of CES

- income elasticity of each good is one (homotheticity)
- relative demand for any two goods depends only on the ratio of prices of these two goods (independence of irrelevant alternatives)
- EoS btw all pairs of goods are not only constant but also identical
- goods are either gross complements (expenditure share is increasing in the relative price if $\sigma<1$) or gross substitutes (if $\sigma>1$)
- either all goods are essential ($p_{\omega} \rightarrow \infty \Rightarrow P \rightarrow \infty$, if $\sigma \leq 1$) or inessential
- no choke prices: demand for any good remains strictly positive at all relative prices, no saturation

From Matsuyama 2023

Landscape of non-CES Aggregators

DEA \cap Homothetic $=\mathrm{CES}$
Known as "Bergson's Law"
DEA \cap IEA = CES.
Samuelson (1965)
IEA \cap Homothetic $=$ CES.
Berndt and Christensen (1973)

Departing from CES in the direction of DEA or IEA introduces nonhomotheticity.

DEA

$$
U(\boldsymbol{c})=\sum_{\Omega} u_{\omega}\left(c_{\omega}\right)
$$

- non-nomothetic unless CES, i.e., $u_{\omega}(x) \equiv a_{\omega} x^{(\sigma-1) / \sigma}$
- demand:

$$
c_{\omega}=D_{\omega}\left(p_{\omega} / A\right), D_{\omega}(\cdot) \equiv\left(u_{\omega}^{\prime}\right)^{-1}(\cdot), A \equiv\left[\sum_{\Omega} u_{\omega}^{\prime}\left(c_{\omega}\right) c_{\omega} d \omega\right] / E
$$

- flexible demand elasticity: $\sigma_{\omega}(p / A) \equiv-\frac{\partial \ln D_{\omega}(p / A)}{\partial \ln (p / A)}$
- but: MRS btw ω, ω^{\prime} is independent of any other good:

$$
p_{\omega} / p_{\omega^{\prime}}=u_{\omega}^{\prime}\left(c_{\omega}\right) / u_{\omega^{\prime}}^{\prime}\left(c_{\omega^{\prime}}\right)
$$

- so variable markups stem from non-homotheticity, not from competition

DEA: Examples

$$
U(\boldsymbol{c})=\sum_{\Omega} u_{\omega}\left(c_{\omega}\right)
$$

- quasi linear: $U(\boldsymbol{c})=C_{o}+\int_{\Omega} u_{\omega}\left(c_{\omega}\right) d \omega$
- Stone-Geary: $U(\boldsymbol{c})=\sum_{i=1}^{N} \beta_{i} \frac{\left(x_{i}-\bar{x}_{i}\right)^{(\sigma-1) / \sigma}}{1-1 / \sigma}$
- \bar{x}_{i} is the subsistence level, ladder of development in consumption: relative expenditures on i and j is decreasing in $E \Leftrightarrow \bar{x}_{i}>\bar{x}_{j}$
- but: relative MPC is constant in E
- asymptotically homothetic, i.e., as income goes to infinity, MRS between any two goods becomes independent of income
- also: Houthakker's addilog (1960), Caron et al (2014) constant ratio of income elasticities

Non-homothetic CES

- by far the most popular function to model non-homotheticity these days: Bohr et al (2021), Comin et al (2021), Cravino-Sotelo 2019, FujiwaraMatsuyama (2022), Matsuyama (2019), ...
- direct utility is implicitly defined

$$
\left[\sum_{i=1}^{n} \beta_{i}(U)^{1 / \sigma(U)}\left(\frac{c_{i}}{U}\right)^{1-\frac{1}{\sigma(U)}}\right]^{\sigma(U) /(\sigma(U)-1)}=1
$$

- price index $P=P(\boldsymbol{p}, U)$ satisfies $P U=E$

$$
\left[\sum_{i=1}^{N} \frac{\beta_{i}(U)}{U^{1-1 / \sigma(U)}}\left(\frac{p_{i}}{P}\right)^{1-\sigma(U)}\right]^{1 /(1-\sigma(U))}=1
$$

- non-nomothetic if $\partial \beta_{i}(U) / \partial U$ depends on i or $\sigma(U)$ depends on U

Isoelastic non-nomothetic CES

- set $\beta_{i}(U)=\beta_{i} \times U^{\epsilon_{i}-\sigma}$. and $\sigma(U)=\sigma$
- require $\left(\varepsilon_{i}-\sigma\right) /(1-\sigma)>0$ to be well-behaved
- budget shares:

$$
m_{i}=p_{i} c_{i} / E=\beta_{i}\left(\frac{E}{P}\right)^{\varepsilon_{i}-1}\left(\frac{p_{i}}{P}\right)^{1-\sigma}
$$

- relative expenditure shares are log-linear in $E / P=U$ and p_{i}

$$
\ln \left(\frac{m_{i}}{m_{j}}\right)=\ln \frac{\beta_{i}}{\beta_{j}}+(1-\sigma) \ln \frac{p_{i}}{p_{j}}+\left(\varepsilon_{i}-\varepsilon_{j}\right) \ln \frac{E}{P}
$$

- advantages over Stone-Geary: not nomothetic in the limit, log-additive expenditure shares (nice for estimation)

Homothetic non-CES

- non-homotheticity is useful in some contexts: structural transformation, development, inequality
- in many (most) other contexts, not giving up homotheticity is important
- CRS is key for aggregation in macro
- in nested structures (multi-industry, also multi-region), having nonhomotheticities anywhere but at "top" creates problems
- in markup/market power context, effect of non-homotheticities is often hard to separate from the effects of concentration/competition (or sometimes, confused with it see DEA)

Homothetic demand systems

- if $U(\boldsymbol{c})$ is homothetic, then it has a dual representation in the form of an ideal price index, defined as $P=P(\boldsymbol{p})=\min _{c}\{\boldsymbol{p} \boldsymbol{c} \mid U(\boldsymbol{c}) \geq 1\}$
- $P=P(p)$ is also often called the unit cost function
- homotheticity: $P(\boldsymbol{p})$ indep. of U, linear homogeneity: $P(\lambda \boldsymbol{p})=\lambda P(\boldsymbol{p})$
- demand solves: $c(\boldsymbol{p})=\arg \min _{\boldsymbol{c}}\{\boldsymbol{p} \boldsymbol{c} \mid U(\boldsymbol{c}) \geq U\}$
- Shephard's lemma I: $\partial E / \partial U=P(\boldsymbol{p})$
- Shephard's lemma II: $c_{\omega}(\boldsymbol{p})=\partial E / \partial p_{\omega}=\frac{\partial P(\boldsymbol{p})}{\partial p_{\omega}} U$

Homothetic demand systems

- re-arrange $c_{\omega}(\boldsymbol{p})=\partial E / \partial p_{\omega}=\frac{\partial P(\boldsymbol{p})}{\partial p_{\omega}} U$ and $P(\boldsymbol{p}) U=E$ to obtain

$$
m_{\omega}=\frac{p_{\omega} c_{\omega}}{E}=\frac{\partial \ln P(\boldsymbol{p})}{\partial \ln p_{\omega}}
$$

- Euler's theorem implies that market shares add to 1

$$
\sum_{\Omega} m_{\omega}=\sum_{\Omega} \frac{\partial \ln P(\boldsymbol{p})}{\partial \ln p_{\omega}}=1, \text { or } \int_{\Omega} m_{\omega} d \omega=\int_{\omega} \frac{\partial \ln P(\boldsymbol{p})}{\partial \ln p_{\omega}} d \omega=1
$$

- hence, any homothetic demand system is fully characterized these two equations $P(\boldsymbol{p})$
- the CES case is very special: the second equation directly defines P

$$
m_{\omega}=a_{\omega}\left(\frac{p_{\omega}}{P}\right)^{1-\sigma}, a_{\omega}>0 \text { and } \sum_{\Omega} m_{\omega}=1 \Leftrightarrow P^{1-\sigma}=\sum_{\Omega} a_{\omega} p_{\omega}^{1-\sigma}
$$

Homothetic with a Single Aggregator (HSA)

- HSA: the market share function directly becomes the primitive
- a homothetic $U(\boldsymbol{c})$ is called HSA if a good's market shares m_{ω} depends only on its price relative to a common aggregator $A(\boldsymbol{p})$ such that

$$
\begin{gathered}
m_{i}=\frac{p_{i} c_{i}}{E}=s_{\omega}\left(\frac{p_{\omega}}{A(\boldsymbol{p})}\right) \\
\int_{\Omega} s_{\omega}\left(\frac{p_{\omega}}{A(\boldsymbol{p})}\right)=1
\end{gathered}
$$

- $s_{\omega}(\cdot)$ are the primitives, assumptions: $s_{\omega}^{\prime}<0$ (gross substitutes), $\lim _{z \rightarrow \bar{z}} s_{\omega}(z)=0$ (if \bar{z} is finite, this is the choke price)
- $A(\boldsymbol{p})$ is a price aggregator: mediates competition/cross-price effects in the demand system
- HSA is new (2017): not much usage yet (see Kimball later), but in my view the most tractable option

Link between P and A

- $A(\boldsymbol{p})$ captures cross-price in the demand system

$$
\int_{\Omega} s_{\omega}\left(\frac{p_{\omega}}{A(p)}\right)=1
$$

- $P(\boldsymbol{p})$ captures welfare effects of prices
- $A(\boldsymbol{p})$ is related to the ideal price $P(\boldsymbol{p})$ index via (M\&U 2017 for proof)

$$
\ln \frac{P(\boldsymbol{p})}{A(\boldsymbol{p})}=c_{1}-\int_{\Omega}\left[\int_{p_{\omega} / P}^{\infty} \frac{s_{\omega}(\zeta)}{\zeta} d \zeta\right] d \omega
$$

- c_{1} is an inconsequential constant (depends on normalization)
- the difference between P and A is consumer surplus: the value of having varieties available at a given relative price vector p / P

Consumer surplus

$$
\delta_{\omega}\left(\frac{p_{\omega}}{A}\right) \equiv 1+\int_{p_{\omega} / P}^{\infty} \frac{s_{\omega}(\zeta)}{\zeta} d \zeta=\frac{\int_{p_{\omega}}^{\infty} c_{\omega}(p) d p}{s_{\omega}\left(\frac{p_{\omega}}{P}\right)} \geq 1
$$

- hence, can express the difference between A and P as a sales-weighted average of the ratios of consumer surplus to sales across all goods
Price p

$$
\ln \frac{P(\boldsymbol{p})}{A(\boldsymbol{p})}=c_{1}+\int_{\Omega} s_{\omega}\left[\frac{C S_{\omega}}{s_{\omega}}\right] d \omega
$$

CES as a special case

- HSA is CES if $\forall \omega, s_{\omega}(z)=a_{\omega} z^{1-\sigma}, A(\boldsymbol{p})$ captures cross-price effects in demand:

$$
\int_{\Omega} a_{\omega}\left(\frac{p_{\omega}}{A(p)}\right)^{1-\sigma} d \omega=1 \Leftrightarrow A(\boldsymbol{p})^{1-\sigma}=\int_{\Omega} a_{\omega} p_{\omega}^{1-\sigma} d \omega
$$

- $A(\boldsymbol{p})$ comoves one-to-one with the ideal price index $P(\boldsymbol{p})$

$$
\frac{P(\boldsymbol{p})}{A(\boldsymbol{p})}=c_{1} \times \frac{1}{\sigma-1} \Leftrightarrow P(\boldsymbol{p})=\text { constant } \times A(\boldsymbol{p})
$$

- hence: for CES, the common aggregator and the ideal price index coincide!
- reason: for all goods, consumer surplus to sales ratio is constant, exogenous and equal to the sales to variable costs $=$ variable profit ratio $1 /(\sigma-1)$
- under general HSA: consumer surplus is variable, endogenous and may be higher or lower than the private surplus (i.e., the markup)

Markups under HSA

- under HSA, demand elasticity is variable, even if producer ω takes aggregates, i.e., the common aggregator A as given

$$
\sigma_{\omega}=\sigma_{\omega}\left(\frac{p}{A}\right)=1-\frac{\partial \ln s_{\omega}(p / A)}{\partial \ln (p / A)}
$$

- by choosing $s_{\omega}(\cdot)$, can match any shape of (downward-sloping) residual demand curve - hence, can match a lot (!) of patterns for the markup μ_{ω}

$$
\mu_{\omega}=\mu_{\omega}\left(\frac{p}{A}\right)=\frac{\sigma_{\omega}\left(\frac{p}{A}\right)}{\sigma_{\omega}\left(\frac{p}{A}\right)-1}
$$

- markups vary by relative price and may vary by ω (conditional on relative price, e.g., quality may matter differentially from productivity)
- markups may be decreasing in relative price (as in Atkeson-Burstein), increasing in relative price, or display a non-linear relationship with price

HSA: Functional form examples

- perturbed CES with monotonicity: $\sigma(z)=\sigma+a(\sigma-1) g(z)$,
- here: $g^{\prime}>0, g(0)=0, g(\infty)=1$, and σ, a are constants
- gives markup - sales relationship as Atkeson-Burstein if $a<0$ perturbed CES: $\sigma(z)=\sigma+a(\sigma-1) g(z)$, where $g^{\prime}>0, g(0)=0, g(\infty)=1$
- perturbed CES w/o monotonicity: $\sigma(z)=1+(\sigma-1) \frac{\delta z g^{\prime}(z)}{1+\delta(\sigma-1) g(z)}$
- here, $g(0)=0, g(\infty)=0$
- δ can be positive or negative: allows non-linear markup-sales patterns
- generalized translog: $\sigma(z)=1+\eta /[\ln (\bar{z} / z)]$ for $z<\bar{z}$
- introduced to the trade literature by Feenstra 2003
- famous for the choke price

Pass-throughs under HSA

${ }^{-}$let $p_{\omega}=\mu_{\omega} \times \mathrm{mc}_{\omega}$

- price-cost pass-through ρ_{ω} depends (intuitively) on the elasticity of the markup function

$$
\rho_{\omega}\left(\frac{p}{A}\right) \equiv \frac{\partial \log p_{\omega}}{\partial \log \mathrm{mC}_{\omega}}=\frac{1}{1-\frac{\frac{p}{\mu_{\omega}}{ }^{\prime}\left(\frac{p}{p}\right)}{\mu_{\omega}\left(\frac{p}{p}\right)}}
$$

- $\rho_{\omega}=1$ whenever a firm ω has a constant markup
- else, $\rho_{\omega} \in[0,1]$ can be guaranteed if $\mu_{\omega}^{\prime}<0$, i.e., if each firm's markup share is decreasing in it's sales share

Micro-foundation: The role of IIA

- similar to the CES demand system, the HSA demand system can be derived from a logit discrete choice model (Trottner 2023)
- however, in contrast to standard logit, choices will violate independence of irrelevant alternatives, i.e.: the differentiation between goods will depend on the overall competitiveness of the market
- IIA + infinitely many firms: no complementarities in pricing behavior
- IIA + finitely many firms: direct strategic complementarities between each pair of firms
- HSA + infinitely many firms: indirect strategic complementarities between any firm and all other firms

HSA in Action: Melitz revisited

- consider a closed-economy, with mass of L consumers
- normalize $w=1$
- symmetric HSA, so total demand for each firm is $L s\left(\frac{p_{\omega}}{A}\right)$, CES case is

$$
s^{C E S}\left(\frac{p_{\omega}}{A}\right)=\left(\frac{p_{\omega}}{A}\right)^{1-\sigma}
$$

- firms with productivity φ behave symmetrically, index firms by φ
- technology: A firm with productivity φ can produce q using l units of labor according to

$$
l(\varphi)=f_{d}+\frac{q(\omega)}{\varphi(\omega)}
$$

- entry cost f_{d}, overhead cost f_{o}

HSA Melitz: pricing and profits

- HSA price

$$
p_{\varphi}=\mu_{\omega}\left(\frac{p_{\omega}}{A}\right) / \varphi
$$

- CES price:

$$
p_{\varphi}=\mu / \varphi
$$

- HSA operating profits under HSA

$$
\pi_{\varphi}=L\left(1-\frac{1}{\mu_{\varphi}}\right) s_{\varphi}-f_{o}
$$

- CES operating profits

$$
\pi_{\varphi}=L\left(1-\frac{1}{\mu}\right) s_{\varphi}^{C E S}-f_{o}
$$

Zero Profit Condition

- exit cutoff φ^{*} under HSA

$$
L\left(1-\frac{1}{\mu_{\varphi^{*}}}\right) s_{\varphi^{*}}=f_{o}
$$

- exit cutoff under CES

$$
L\left(1-\frac{1}{\mu}\right) s_{\varphi^{*}}^{C E S}=f_{o}
$$

- difference: curvature of the markup function matters

Free Entry

- Free entry condition under HSA

$$
\int_{\varphi^{*}}^{\infty}\left[L\left(1-\frac{1}{\mu_{\varphi}}\right) s_{\varphi}-f_{o}\right] d G(\varphi)=f_{e}
$$

- exit cutoff under CES

$$
\int_{\varphi_{C E S}^{*}}^{\infty}\left[L\left(1-\frac{1}{\mu}\right) s_{\varphi}^{C E S}-f_{o}\right] d G(\varphi)=f_{e}
$$

Equilibrium: M, A, φ^{*} s.t.

- goods market clear, exit and entry are optimal
(market clearing) $\quad M \int_{\varphi^{*}}^{\infty} s\left(\frac{p_{\omega}}{A(\boldsymbol{p})}\right) d G(\omega)=1$
(ZPC)

$$
L\left(1-\frac{1}{\mu_{\varphi^{*}}}\right) s_{\varphi^{*}}=f_{o}
$$

(Free entry)

$$
\int_{\varphi^{*}}^{\infty}\left[L\left(1-\frac{1}{\mu_{\varphi}}\right) s_{\varphi}-f_{o}\right] d G(\varphi)=f_{e}
$$

where $\mu_{\varphi}=\frac{\sigma_{\varphi}\left(\frac{p}{A}\right)}{\sigma\left(\frac{p}{A}\right)-1}, s_{\varphi}=s\left(\frac{p_{\varphi}}{A}\right), p_{\varphi}=\mu_{\varphi} / \varphi$

- guess A, solve for prices, markups and sales shares
- then solve for φ^{*} using ZPC and M using market clearing
- given all the above, solve for A using free entry, compare, update...

Equilibrium: Efficiency

(market clearing)

$$
M \int_{\varphi^{*}}^{\infty} s\left(\frac{p_{\omega}}{A(p)}\right) d G(\omega)=1
$$

(ZPC)

$$
\begin{aligned}
& L\left(1-\frac{1}{\mu_{\varphi^{*}}}\right) s_{\varphi^{*}}=f_{o} \\
& \int_{\varphi^{*}}^{\infty}\left[L\left(1-\frac{1}{\mu_{\varphi}}\right) s_{\varphi}-f_{o}\right] d G(\varphi)=f_{e}
\end{aligned}
$$

(Free entry)
where $\mu_{\varphi}=\frac{\sigma_{\varphi}\left(\frac{p}{A}\right)}{\sigma\left(\frac{p}{A}\right)-1}, s_{\varphi}=s\left(\frac{p_{\varphi}}{A}\right), p_{\varphi}=\mu_{\varphi} / \varphi$

- note that P does not appear in these equilibrium conditions
- intuitively: market mechanism incentivizes competition, A, through private profits, μ_{φ}, but not welfare, P, which depends on "social profits"
- A and P coincide only in the CES case
- hence: the equilibrium will be efficient if and only if markups are constant

Local margins of inefficiency

- cross-sectional distortion: φ too small compared to φ^{\prime} iff

$$
\mu_{\varphi}>\mu_{\varphi^{\prime}}
$$

- entry distortion: M is excessive (else, insufficient) iff

$$
\bar{\mu}=\left(\int_{\varphi^{*}}^{\infty} s_{\varphi}\left(1 / \mu_{\varphi}\right)^{-1} d G(\varphi)\right)^{-1}>\left(\int_{\varphi^{*}}^{\infty} s_{\varphi} \delta_{\varphi} d G(\varphi)\right)=\bar{\delta}
$$

- selection distortion: φ^{*} is too high (else, too low) iff

$$
\bar{\delta}>\delta_{\varphi^{*}}
$$

- see also Baqaee Fahri 2023, Edmond Midrigan Xu 2023
- "sufficient statistics": also when underlying heterogeneity goes beyond productivity

Global Welfare Change: Ex-Post statistics

$$
d \ln \frac{1}{P}=(\bar{\delta}-1) d \ln M+\left(\delta_{\varphi^{*}}-\bar{\delta}\right) \frac{g(\varphi)}{1-G(\varphi} d \varphi^{*}+\mathbb{E}_{s}\left[d \ln \mu_{\varphi}\right]
$$

- three margins of welfare gains

1. $d \ln M$: entry
2. $d \varphi^{*}$: selection
3. $d \ln \mu_{\varphi}$: markups

- CES-baseline: all welfare effects from entry $d \ln \frac{1}{P}=(\mu-1) d \ln M$
- markups exogenous $\mu_{\varphi}=\mu$,
- all varieties provide the same surplus $\delta_{\omega}=\delta_{\omega^{\prime}}=\mu$
- variable, heterogeneous markups
- all margins active

Gains from Market Size in Krugman

- Krugman: homogeneous firms, no selection +cross-sectional distortions market clearing: $M s\left(\frac{p}{A(p)}\right)=1$, (FE) $L\left[1-\frac{1}{\mu(p / A)}\right] s\left(\frac{p}{A}\right)=f_{e}$

$$
\begin{gathered}
-\ln P / A=M \int_{p / A}^{\infty} \frac{s(\xi)}{\xi} d \xi=M(\delta-1) \\
\mu(p / A)=\frac{\sigma\left(\frac{D}{A}\right)}{\sigma\left(\frac{p}{A}\right)-1}, p=\mu
\end{gathered}
$$

- can show that welfare effect of market size $d \ln L$ equals

$$
d \ln \frac{1}{P}=(\delta-1) d \ln L+\left(1-\frac{\delta}{\mu}\right) \sigma(1-\rho) d \ln L
$$

- Δ technical efficiency "love-for-variety" $+\Delta$ allocative efficiency

Gains from Market Size: Krugman

$$
-\ln P / A=M \int_{p / A}^{\infty} \frac{s(\xi)}{\xi} d \xi=M(\delta-1)
$$

- welfare effect of market size $d \ln L$ equals

$$
d \ln \frac{1}{P}=(\delta-1) d \ln L+\left(1-\frac{\delta}{\mu}\right) \sigma(1-\rho) d \ln L
$$

- Δ technical efficiency "love-for-variety" $+\Delta$ allocative efficiency
- when demand is CES, then $\delta=\mu, \rho=1$, so only technical gains
- gains reflect pure increase in variety M, which consumers "love"
- else, increase in M can "on the margin" improve allocative efficiency if:
- competition lowers the markup $1-\rho>0$ and entry was excessive $\mu>\delta$
- competition raises markup $1-\rho<0$ and entry was insufficient $\mu<\delta$

Gains from Market Size: Melitz

- get two additional allocative effects
- cross-sectional distortions: conditional on markups, high-markup firms are more shielded from competition, so entry (i.e., competition) reallocates towards them, which improves efficiency (Baqaee Fahri 23: Darwinian effect)

$$
d \ln c_{\varphi}=-\sigma_{\varphi} d \ln \frac{\mu_{\varphi}}{A}-d \ln A
$$

- selection distortion: depends on whether selection was initially too high/ low and whether competition induces more or less entry
- key lesson: returns-to-scale are endogenous when markups are variable
- (local) returns-to-scale are the single-most important statistic in growth (i.e., Romer) and spatial (i.e., place-based policies)

Another homothetic non-CES demand system

- Kimball (HDIA in Matsuyama's classification): defined implicitly

$$
\int_{\Omega} \phi_{\omega}\left(\frac{c_{\omega}}{C(\omega)}\right)=1
$$

- demand system requires two aggregators, $P(\boldsymbol{p})$ and $B(\boldsymbol{p})$

$$
\begin{gathered}
\frac{c_{i} p_{i}}{E}=\frac{\partial \ln P(\boldsymbol{p})}{\partial \ln p_{\omega}}=\frac{p_{\omega}}{P(\boldsymbol{p})}\left(\phi_{\omega}^{\prime}\right)^{-1}\left(\frac{p_{\omega}}{B(\boldsymbol{p})}\right) \\
\int_{\omega} \phi_{\omega}\left(\left(\phi_{\omega}^{\prime}\right)^{-1}\left(\frac{p_{\omega}}{B(\boldsymbol{p})}\right)\right) d \omega=1 \\
P(\boldsymbol{p})=\int p_{\omega}\left(\phi_{\omega}^{\prime}\right)^{-1}\left(\frac{p_{\omega}}{B(\boldsymbol{p})}\right) d \omega
\end{gathered}
$$

- $B(\boldsymbol{p})$ is a competition index (similar role to A in HSA)
- similarly flexible to HSA, CES is special case if $\phi_{\omega}(x)=x^{(\sigma-1) / \sigma}$
- two aggregators can be cumbersome, but its not too bad, Kimball has seen a LOT of usage in short-run macro

Klenow-Willis functional form

- Klenow-Willis 2016 proposed the by far most popular functional form for Kimball's 1995 aggregator

$$
\phi(x)=(\bar{\sigma}-1) \exp \left(\frac{1}{\epsilon}\right) \epsilon^{\frac{\bar{\sigma}}{\epsilon}-1}\left[\Gamma\left(\frac{\bar{\sigma}}{\epsilon}, 0\right)-\Gamma\left(\frac{\bar{\sigma}}{\epsilon}, x^{\frac{\bar{\sigma}}{\epsilon}} / \epsilon\right)\right]
$$

- $\Gamma(\cdot, \cdot)$ is the incomplete Gamma function, $\bar{\sigma}>1, \varepsilon>0$
- implied elasticity: $-\frac{\partial \ln c\left(\frac{p_{\omega}}{B}\right)}{\partial \ln \left(\frac{p_{\omega}}{B}\right)}=\sigma\left(\frac{p_{\omega}}{P}\right)=\frac{\bar{\sigma}}{1-\epsilon \log \left(\frac{\sigma-1}{\sigma} \frac{p_{\omega}}{B}\right)}$
- super-elasticity: $-\frac{\partial \ln \sigma\left(\frac{p_{\omega}}{B}\right)}{\partial \ln \left(\frac{p_{\omega}}{B}\right)}=\frac{\epsilon}{1-\epsilon \log \left(\frac{\sigma-1}{\sigma} \frac{p_{\omega}}{B}\right)}$
- relationship between share of variable cost in sales and markups:

$$
\ln \frac{1}{\mu_{\omega}}+\ln \left(1-\frac{1}{\mu_{\omega}}=\text { constant }+\frac{\epsilon}{\sigma} \ln s_{\omega}\right.
$$

Kimball in the Literature

- Edmund, Midrigan, Xu: How costly are Markups?, JPE, 23
- Baqaee, Farhi, Sangani: The supply-side effects of MP, JPE 23
- Santiago Franco, Output Market Power and Spatial Misallocation 24 JMP
- Werning, Wang: Dynamic Oligopoly, AER 22
- Edmund, Midrigan, Xu: Competition, Markups, and Gains from International Trade, AER 2015
- Gopinath, Itskhoki: Currency Choice and Exchange Rate Pass-through, AER 10

Summary

- Non-CES MC is a highly tractable way to account for variable markups with free entry
- cost: does not speak to the highly concentrated nature of many markets as firms are still atomistic
- homothetic non-CES aggregators imply that the value of having goods available at a certain set of prices to consumers depends on market-wide price statistic(s)
- comparison: in search, reservation price is a function of the distribution of prices
- if price distributions can be characterized by a handful of statistics (i.e., mean, variance), could we perhaps map non-CES demand systems into those arising in search settings?

