Market Power -Measurement

Winter 2024

Market Power and Productivity

- secular trend: the emergence of "superstar firms"
- does this reflect productivity or an increase in market power?
- ▶ what are the consequences for inequality, welfare, policy...?
- ► This slide deck: Measurement of markups and productivity
- Next: Theories with endogenous competition and market power

The firm size distribution

- very robust finding: firm size distribution has a long upper tail
- this holds within the majority of industries, countries and after conditioning on observables
- typically, the size distribution is approximated with a lognormal or Pareto distribution
- broader theme: firms exhibit tremendous heterogeneity with respect to almost any variable we look at

Gibrat's law

- Gibrat's law states that if the growth rate of a variable is independent of its size, it will have a log-normal distribution in the long-run
- ▶ bare-bone model: let Y_{it} denote firm i's size in year t. Suppose it evolves according to:

$$Y_{it}/Y_{i,t-1}-1=\varepsilon_{it},$$

where ε_{it} is i.i.d. across firms and time

then, after allowing a large group of firms to evolve a while, the crosssection of firm sizes will have a log-normal distribution

Log-normality in Portugal: Cabral Mata 2003

FIGURE 2. FIRM SIZE DISTRIBUTION IN 1983 (SOLID LINE) AND 1991 (DASHED LINE), BASED ON EMPLOYMENT DATA FROM THE QUADROS DO PESSOAL DATA SET

Theoretical models of industry dynamics

- "Gibrat model" is too simple to explain the data, but it is in the background: most modern models of heterogeneous firms are based on the assumption that firms experience random, time-varying shocks
- Jovanovic 1982: entry and exit model that explains systematic relationship between variable growth rates, exit rates and firm size
- ► Hopenhayn 1992: equilibrium model with stochastic productivity
- Melitz 2003: equilibrium model with selection intro trade
- In all of the above, changes in firm size distribution are interpreted as changes in the underlying productivity distribution
- ► reason: exogenous market power, i.e., markups

Markup variation over time

De Locker, Eeckhout, Unger (2020)

Markups vs Productivity

- market power is a source of misallocation
- if markups are endogenous, changes in firm dynamics could reflect market power or productivity
- posts a challenge for theory and measurement alike
- yet, many secular trends are likely intertwined with market power dynamics
 - Falling labor share, declining business dynamism, wage stagnation, secular trends in interest rates
- Iots of interesting work to be done theoretically and empirically

Estimating Market Power

literature has focused on price markups

$$p_i = \mu_i \times mc_i = \frac{\sigma_i}{\sigma_i - 1} \times mc_i$$

- ► to main approaches:
 - 1. demand-based methods: estimate the residual demand curve
 - 2. production-based methods: estimate production function
- will mostly focus on 2.: main focus of macro/trade/spatial literature;
 forces us to deal with markups vs productivity
- ▶ papers that compare 1. and 2. in the same setting are rare
 - See de Loecker and Scott (2016) for an exercise like that for the US beer industry

Method 1: Demand-based methods

- ▶ by far the most common approach in the field of IO
 - See e.g., Ackerberg et al (2007, Handbook chapter)
- basic idea is to imagine that within some industry grouping with J products we can estimate the demand system:

$$Q_i = d_i(\mathbf{P}), \ \forall i$$

- ► Then assume some sort of "conduct", or market structure
 - i.e., the game that producers are playing in the model

Method 1

Firm's FOC can be written as:

$$P_i = \mu_i M C_i$$
 $\mu_i \equiv \frac{\sigma_i}{\sigma_i - 1}$

• σ_i : perceived price elasticity of demand (residual elasticity) given by:

$$\sigma_{i} = -\frac{dQ_{i}}{dP_{i}} = -\left(\frac{\partial Q_{i}}{\partial P_{i}} + \sum_{j \neq i} \frac{\partial Q_{i}}{\partial P_{j}} \frac{dP_{j}}{dP_{i}}\right)$$

► special cases (e.g., perfect/monopolistic competition, Bertrand, Cournot, Collusion,...) restrict $\frac{dP_i}{dP_i}$

Method 1: Demand-based

- demand estimation is hard
 - 1. curse of dimensionality
 - 2. hard to find instruments
 - 3. which conduct to assume?
- little application outside of IO
 - data requirements are substantial, hard to go beyond particular industries/ product categories

Method 2: Production-based

- ► basic idea: Use firm production data (output and inputs) to effectively measure something like MC (and then just take $\mu = P/MC$)
- intellectual history of the current approach
 - Hall (JPE 1988)
 - Olley Pakes (1999), ...
 - De Loecker Warczynski (AER 2012)

de Loecker Warzynski

- ► idea: Start from cost-minimization problem of the firm
 - markups related to input cost shares and output elasticities
 - hard part is to estimate the output elasticity
- assumptions
 - firm has production function $Q_{it} = F(X_{it}^1, \dots, X_{it}^V, K_{it}, \theta_{it})$ where X denotes variable inputs, K is capital and θ_{it} is productivity
 - variable input prices P_{it}^X are taken as given
 - firms minimize cost
 - no further restrictions on demand curve or conduct

de Loecker Warzynski: Sketch

► the Lagrangian for cost-minimization is given by

$$\mathscr{L}\left(X_{it}^{1},\ldots,X_{it}^{V},K_{it},\lambda_{it}\right) = \sum_{\nu=1}^{V} P_{it}^{\nu}X_{it}^{\nu} + r_{it}K_{it} + \lambda_{it}(Q_{it} - Q(\cdot))$$

► first-order condition:

$$P_{it}^{\nu} = \lambda_{it} \frac{\partial Q_{it}(\cdot)}{\partial X_{it}^{\nu}}$$

• λ_{it} = Lagrange Multiplier = marginal cost at Q_{it}

de Loecker Warzynski: Sketch

$$P_{it}^{\nu} = \lambda_{it} \frac{\partial Q_{it}(\cdot)}{\partial X_{it}^{\nu}}$$

• Multiply by X_{it}^{ν}/Q_{it}

P_{i}	$V_{it}^{v}X_{it}^{v}$	1	X_{it}^{v}	$\partial Q_{it}(\cdot)$
	Q_{it}	λ_{it}	Q_{it}^{v}	∂X_{it}^{ν}

• since $MC_{it} = \lambda_{it} = P_{it}/\mu_{it}$, can rewrite this as:

$$\frac{P_{it}^{\nu}X_{it}^{\nu}}{P_{it}Q_{it}}\mu_{it} = \frac{X_{it}^{\nu}}{Q_{it}^{\nu}}\frac{\partial Q_{it}(\cdot)}{\partial X_{it}^{\nu}}$$

The markup formula

► The leads to the simple expression

$$\mu_{it} = \theta_{it}^{\nu} / \alpha_{it}^{\nu}$$

- θ_{it}^{v} : The output elasticity with respect to input v
- α_{it}^{v} : The expenditure cost share of input v
- ► this is essentially Hall's insight: Whenever a variable input's output elasticity is greater than the input's revenue share, the difference is the markup (µ_{it} > 1) - but here no need to impose CRTS!
- ▶ implementation:
 - input shares are easily observed
 - to get the input's output elasticity, requires estimating productivity

Production function estimation

consider a Cobb-Douglas technology (everything in logs)

$$q_{it} = \theta^l l_{it} + \theta^k k_{it} + \omega_{it} + \epsilon_{it}$$

- hicks-neutral productivity $\exp(\omega_{it})$
- ϵ_{it} : idiosyncratic productivity shock/measurement error
- productivity ω_{it} is observed by firm, not by econometrician
 - input choices respond to unobserved ω_{it}
 - OLS, therefore, suffers from endogeneity
- ► hence, recovering the production function is to estimate productivity

Productivity dispersion

- Bartelsman and Doms (2003) review some work on productivity
 - large productivity dispersion
 - within firm, productivity is highly but imperfectly persistent
 - there is considerable reallocation within industries
- De Loecker and Syverson (2021) report that 90-10 percentile TFP ratios of 2:1 are typical

What to make of these residuals?

- "I found the spectacle of economic models yielding large residuals rather uncomfortable, even when the issue was fudged by renaming them technical change and claiming credit for their measurement" - Zvi Griliches
- bad data could be one reason for TFP dispersion, but we observe large dispersion everywhere we have data, and measured productivities are connected to real outcomes
 - more productive firms are less likely to exit
 - more productive firms are more likely to export
 - entrants tend to have lower productivity than average incumbent

Thinking about bias

- ► how does simultaneity of input decisions bias the labor coefficient?
 - up: when productivity is high, a firm uses more labor
- selection due to exit can bias the capital coefficient estimate down
 - firms with high capital have lower exit cutoffs. thus, conditional on survival, there is a negative correlation between k and ω.
- another potential source of bias: measurement error, see Collard-Wexler and De Loecker (2016)

Olley-Pakes (1996)

- key idea: address the simultaneity problem by imposing additional structure on firms factor input decisions
- consider a firm that maximizes the present discounted value of current and future profits
- \blacktriangleright assume the observed productivity term ω_{it} evolves exogenously according to the Markov process

$$p(\omega_{it+1} | I_{it}) = p(\omega_{it+1} | \omega_{it})$$

- I_{it} : Information set at time t
- hence, $\omega_{it} = \mathbb{E}(\omega_{it} | \omega_{it-1}) + \xi_{it}$, where $\mathbb{E}(\xi_{it} | I_{it-1}) = 0$
- Iabor is assumed to be a static input chosen optimally each period with zero adjustment costs

Productivity inversion

 Assume that a firms optimal investment is a strictly increasing function of their current productivity \omega_{it}

$$i_{it} = h_t \left(\omega_{it}, k_{it} \right)$$

- h_t captures input prices etc.
- given monotonicity, optimal investment can be inverted for productivity

$$\omega_{it} = h_t^{-1}(i_{it}, k_{it})$$

this inverse function can be used to non-parametrically control for the productivity in the production function

OP first-stage

Substitute inverse function into the production technology

$$q_{it} = \theta^l l_{it} + \theta^k k_{it} + h_t^{-1}(i_{it}, k_{it}) + \epsilon_{it}$$

model the inverse function non-parametrically, which yields:

$$q_{it} = \theta^L l_{it} + \Phi_t(i_{it}, k_{it}) + \epsilon_{it}$$

- ► the coefficient on capital is not identified in the first-stage
 - colinear with the non-parametric function in i_{it} and k_{it}
- But can obtain estimates for Φ_t and θ^L in the first-stage, using a non-parametric regression
- Ackerberg, Craver and Frazer (2015) think more carefully about what is identifying θ^l , for now, we don't worry

First-stage output

• with $\hat{\theta}^l$, we can estimate $\Phi_t(i_{it}, k_{it})$:

$$\hat{\Phi}_t = q_{it} - \hat{\theta}^l l_{it}$$

- with these estimates, we would like to separate θ^kk and ω, which are both in the control function.
- \blacktriangleright we are going to use the Markov assumption on ω for identification

OP Second Stage

- Productivity process: $\omega_{it} = E(\omega_{it} | \omega_{it-1}) + \xi_{it}$
- ξ_{it} satisfies $E(\xi_{it} | I_{it-1}) = 0$
- Since $k_{it} \in I_{it-1}$, this implies: $E(\xi_{it} | k_{it}) = 0$
- Independence implies $E(k_{it}\xi_{it}) = 0$
- This supplies a moment condition to estimate θ^K
- ► GMM procedure:
- 1. Start with a guess for θ^K
- 2. Compute $\omega_{it}(\theta^K) = \hat{\Phi}_t \theta^K k_{it}$
- 3. Compute ξ_{it} from regressing ω_{it} on ω_{it-1}
- 4. Compute the sample analog to the moment condition above

OP summary

- To identify the labor elasticity, use information in firms investment decisions to control for productivity shocks that is correlated with labor inputs
- Assume capital is determined before unobserved productivity realizes to estimate capital elasticity
- This approach can be implemented with more general technologies than Cobb-Douglas

Where it went from OP

- Investment can be lumpy and there are many zeros in the data
- Levinson and Petrin (2003): propose to use intermediate inputs m_{it}
 - Model it as an additional input under the same assumptions that it is strictly increasing in productivity
 - Then the first stage becomes: $q_{it} = \theta^L l_{it} + \Phi(m_{it}, k_{it}) + \epsilon_{it}$
- Ackerberg Caves Frazer 2015: argue that both OP and LP suffer from identification issues, at least in principle
- they propose a new approach which involves modified assumptions on the timing of input decision and removes identification of all coefficients of the production function to the second-stage

ACF approach

- ► Abandon the attempt to estimate the labor coefficient in the first stage
- Timing assumption: Labor is chosen after capital is chosen in the previous period, but before materials were chosen at time t
- Under these timing assumptions: $m_{it} = f_t(\omega_{it}, k_{it}, l_{it})$
- Under monotonicity, this can be estimated and used to substitute for ω_{it} in the production function

ACF procedure, used in De Loecker Warzyinski

We can write:

$$q_{it} = \Phi_t(m_{it}, k_{it}, l_{it}) + \epsilon_{it}$$
$$\Phi_t(m_{it}, k_{it}, l_{it}) = \theta^k k_{it} + \theta^L l_{it} + f_t^{-1}(m_t, k_{it}, l_{it})$$

- First-stage estimates the control function Φ_t non-parametrically
- The moment condition to identify θ^k is the same
- Need an additional moment condition to identify labor
 - Note that $\xi_{it} = \omega_{it} \omega_{it-1}$ is orthogonal to lagged labor inputs, since this is in the information set at t 1. Essentially, lagged labor is an instrument for current labor.
 - So given a guess for both θ^k and θ^l , can compute $\omega_{it}(\theta^k, \theta^l) = \hat{\Phi}_{it} \theta^k k_{it} \theta^l l_{it}$
 - Then compute ξ_{it} as before, and compute the moment analogues to $\mathbb{E}(k_{it}\xi_{it}) = \mathbb{E}(l_{it-1}\xi_{it}) = 0$

Putting it together

Individual mark-up

$$\mu_{it} = \theta_{it}^{\nu} (\alpha_{it}^{\nu})^{-1}$$

Average mark-up (weighted by cost-share, sales, employment,...)

$$\mu_t = \sum_i m_{it} \mu_{it}$$

Note: this methodology can also be applied to measure mark-down on wages so long as one factor v is competitively sourced:

$$\frac{wL}{pQ} = \frac{\mathcal{M}}{\mu} \alpha^{L}$$
$$\frac{p^{\nu} X^{\nu}}{pQ} = \frac{1}{\mu} \alpha^{\nu}$$

US Median Markup (De Loecker at al 2020)

Average Markups in the U.S.

Changes in the upper tail drive aggregates

Reallocation

- Why are average markups rising?
 - 1. Within effects: Some firms have raised markups a lot
 - 2. Between effects: Reallocation towards high-markup firm

Weights matter!

Weights matter

