
Stabilizing Congestion in Decentralized Record-Keepers*

Assimakis Kattis† Fabian Trottner‡

October 2022

Abstract

We provide an economic analysis of a market for record-keeping instantiated

using succinct proof systems. Our model allows for adaptive adjustments in predi-

cate (block) size according to pre-specified update rules. We show that when block

rewards are absent, there exists a predicate size update rule, based on observed

changes in difficulty, that induces stable equilibrium levels of transaction fees and

congestion at varying levels of user demand. Our theoretical results highlight the

importance of economic incentives for the design of cost-efficient, scalable systems

around a Non-Interactive Zero-Knowledge proof as the consensus puzzle.

*We would like to thank Joseph Bonneau, Tarun Chitra, and Georgios Konstantopoulos for helpful
feedback and discussions.

†akis@kattis.io
‡Department of Economics, University of California, San Diego, ftrottner@ucsd.edu

1 Introduction

Blockchain technology Nakamoto (2008) offers a decentralized alternative to tradi-
tional record-keeping systems. In this work, we study the economic properties of
record-keepers instantiated using succinct proof systems. Miners are responsible for
producing proofs that a set of records (or transactions) provided to them by end-users
is valid, and to add these to an append-only ledger while maintaining consensus. Such
an approach generalizes the Bitcoin model, in that end-users can request a record of any
truth claim (such as smart contract verification). Since the underlying proof-of-work
(PoW) consensus mechanism ensuring correctness poses substantive costs (growing
linearly with system size) Abadi & Brunnermeier (2018); Budish (2018); Thum (2018),
it is desirable for it to output useful computation.

We work within a specific consensus framework, in which the proof of block valid-
ity and the consensus algorithm are combined into one process, while retaining the
Nakamoto consensus Nakamoto (2008) security properties. In this model, a (suitably
designed) Non-Interactive Zero-Knowledge (NIZK) proof is used as the PoW puzzle
Kattis & Bonneau (2020) (instead of an arbitrary hash function). If the NIZK is perform-
ing state verification, this connection provides a link between miners’ computational
work in generating a proof (and thus a block) and the number of transactions that
can be verified in a given block (also referred to as predicate size). Our analysis shows
how to exploit this link so as to design decentralized record-keepers that maintain
cost-efficiency at varying levels of demand. Our contributions are most closely related
to previous work that extracts usefulness out of the PoW procedure Ball et al. (2017);
King (2013), and recent initiatives that permit adaptive block sizes in cryptocurrency
implementations (such as Ethereum Buterin (2014)).

1.1 Operating at Maximal Block Size Smax

A fundamental question concerning the viability of distributed payments is through-
put. If the maximal amount of transactions that we can add is Smax, it is natural to
consider a protocol which produces a proof for Smax transactions in each block. This
system would always be operating at maximal throughput, generating a proof for
Smax transactions regardless of how full the block is. If Smax is large enough to act as
a suitable ceiling1, then the PoNW computation required would always be the same
(subject to the difficulty parameter) and the costs of generating blocks are going to be

1Recent developments in NIZK-based applications such as zk-rollups Buterin (2018 (accessed June 12,
2020) give Smax values that correspond to ∼ 500+ transactions per second, which is substantial enough
for commercial scaling purposes.

1

maximal for all miners. Such a system is inefficient from an economic perspective, as
miners will not receive any cost reduction in proof generation times from including
fewer transactions in the block. Indeed, the properties of PoW mean that this puzzle
would take the same amount of time to solve regardless of its inputs (which in this
case is the transaction set, which can be full or empty). This implies a lower bound for
the number of transactions required for miners to continue operating at a profit.

Further, a system always operating at maximal throughput is also ‘brittle’ to large de-
viations in demand. Previous work Carlsten et al. (2016) has shown that setting block
rewards to zero creates an inherently unstable system if demand is sufficiently low so
that all transactions can be included in a block. By relying solely on transaction fee
revenue, miners are susceptible to large losses in periods when there is little demand.
Although a drop in difficulty could rectify miners’ losses, this creates a security vul-
nerability for the system, making it susceptible to attack. Thus, adaptable throughput
capacity can help ensure that prices compensate miners sufficiently during periods of
low demand. Indeed, by shrinking the predicate size S with falling transaction fees,
the system would bolster mining revenues by restricting the supply of proofs. This
puts upwards pressure on difficulty and mitigates the system’s susceptibility to the
instability result of Carlsten et al. (2016).

1.1.1 From Adaptability to Stability

A crucial design choice in distributed payment systems is that of setting transaction
fees so that they are stable over changes in demand (‘demand shocks’). How Bitcoin
sets fees with a limited amount of block space was analyzed in Huberman et al. (2019),
in which closed form solutions for how transaction fees vary with system congestion
are derived.2 If we parametrize proof size by the number of transactions S that a
given proof verifies (i.e. the number of transactions processed in the given block), then
transaction fees, system congestion, and the computational costs to miners depend on
the size of predicates. Intuitively, this dependence enables suitable update rules for
predicate sizes to adapt throughput to changes in demand in a cost-efficient manner.
We will provide a formal framework to verify this intuition, alongside concrete suitable
update rules.

2Basu et al. (2019) propose an equilibrium model with exogenously given transaction fees and block
size assumed to be restricted to one transaction. Our work focuses on understanding how transaction
fees evolve endogenously as block size changes.

2

1.2 Our Contributions

We provide an economic model of a market for record-keeping instantiated using
succinct proof systems, whose predicate size adjusts according to pre-specified update
rules. Predicate size corresponds to block size (thus characterizing throughput), and
miners generate the corresponding NIZK as a PoW puzzle. We show that the proposed
protocol implies a stable equilibrium over time in the difficulty and predicate size
parameters, where a shock to demand leads to proportional increases in throughput
without any long-term changes in transaction fees and system congestion. This is
due to two complementary features - PoNW consensus and an adaptive block size
update rule - which together ensure that adjustments in predicate size and thus block
capacity incentivize miners to incur higher/lower computational cost in exchange for
higher/lower transaction fee revenue. This adaptability allows the system to achieve
stability.

More specifically, we provide the following contributions:

1. An empirically relevant equilibrium framework permitting an analysis of the
determinants of transaction fees and (entry) behavior of mining pools in a decen-
tralized market for record-keeping featuring adjustments of system throughput
according to arbitrary predicate size update rules.

2. A formal analysis of the dynamic equilibrium behavior induced by various up-
date rules. Specifically, we derive an update rule that induces constant equilib-
rium transaction fees under arbitrary levels of demand (i.e., equilibrium elasticity
of fees with respect to demand is zero due to offsetting throughput increases).

3. An incentive-compatible adaptive PoW system that also performs state verifica-
tion in succinct blockchain architectures. This protocol admits stable levels of
transaction fees that are robust to bounded demand shocks, where the bound can
be made arbitrarily large.

We model miners as profit-maximizing firms that compete for the right to verify an
incoming block of transactions by engaging costly . as to characterize the competitive
equilibrium, and analyze the equilibrium response of transaction fees and compu-
tational costs posed by the system to changes in the demand for throughput. We
characterize the competitive equilibrium and use our model to formally derive the
adjustment of throughput to changes in difficulty under which changes in demand
lead to efficient system cost changes. We prove that under the derived optimal rule,
and when block rewards are zero, changes in demand lead to the balanced growth of
throughput and mining revenues, while transaction fees and wait times remain stable.

3

Our analysis yields two conditions under which stable user fees and wait times across
changing levels of demand can be sustained. First, block rewards need to equal zero.
Only if block rewards are equal to zero, system difficulty is a sufficient statistic for
changes in the demand for throughput. Although necessary at the early stages of
network growth, positive block rewards act as a subsidy in this context and decrease
market efficiency. Second, predicate size updates need to be gradual enough so that
sudden large changes in demand do not destabilize the system. Up to some maximally
tolerated change in demand, an update rule which takes into account changes in
difficulty to alter predicate size proportionately to the shift in demand would admit
stability in its average transaction fees and wait times. Note that this admits a trade-off
between the magnitude of the change in demand that can be tolerated and the time it
takes for the system to converge to equilibrium.

2 Preliminaries

Many blockchain protocols ensure security by requiring miners to publicly verify
energy consumption (known as proof-of-work or PoW Back et al. (2002); Dwork & Naor
(1992)) in order to gain the right to write transactions on the blockchain. We model this
security constraint as the requirement that as demand λ increases, a sufficient statistic
(which in Bitcoin is difficulty d) also causes a proportional increase in miner costs.

Since the total number of miners is an endogenous variable that varies over time, the
protocol needs a way to ensure that a PoW solution is provided at a fixed frequency (on
average) over all participants in the network. This is achieved by requiring the PoW
puzzle to satisfy a ‘difficulty’ requirement, which would mean that the expected time
taken to generate a solution can be calibrated according to a difficulty parameter that
can be changed over time. Through the use of time-stamps, the system ‘self-corrects’
the difficulty of the PoW puzzle to ensure constant block frequency. We model block
frequency as a random variable µ (the block arrival rate) with a constant expectation
(the ‘block time’) mirroring the above technological constraints.

The underlying system consists of a set of users and miners, who each are responsible
for requesting and providing proofs from and to the system respectively. Everyone
has access to the underlying state of the system, which consists of a sequence of valid
transactions that have been processed into the system (the blockchain) along with their
respective proofs of correctness: proofs that each block added to the chain is valid.

Users submit transactions (or ‘records’) to miners along with an associated transaction
fee. The miners in turn are responsible for adding these transactions to some block

4

which is then appended to the blockchain. We denote by S the total number of
transactions verified in the given block. In order for a miner to win the right to add the
next block (and hence collect the corresponding transaction fees and block reward),
they need to win the PoW game, which is a puzzle yielding a valid block in time
proportional to the underlying difficulty parameter. In this model, only miners are
required to keep the whole blockchain (or some kind of ‘state’ data structure) in order
to efficiently generate new blocks and proofs. End-users should be able to efficiently
check provided proofs in order to find the correct chain with minimal bandwidth
requirements.

The process of generating succinct proofs can be quite resource intensive. One way
to deal with this issue is by stipulating that the PoW procedure computes a NIZK as
a by-product of each successful iteration. If the NIZK can be randomly resampled
according to different nonces without affecting the underlying knowledge soundness
claims, it can be used as an effective PoW puzzle. In such a model, the protocol can
restrict miners to produce a NIZK attesting to the validity of S transactions at any
time step and accept it if a hash of the NIZK satisfies some difficulty condition. Using
an update rule for S, such a system can be made to pick the number of transactions
verified in each block based on endogenous system variables by stipulating how many
transactions the NIZK needs to validate. We investigate how this extra degree of
freedom can be leveraged to produce incentive-compatible equilibria in the number of
transactions processed by the system per block.

Efficiency in this system is achieved by artificially constraining the block size to S ≤
Smax, where Smax a universal upper bound specified by a maximally accepted block
size. This restriction to predicate size has the effect of decreasing proof generation
times for miners. This is desirable in the context where Smax is very large and blocks
are (mostly) empty, as the majority of the computational work done to generate a
NIZK of size Smax will not be needed. Thus, enforcing a lower predicate size would
remove the requirements for generating a very large NIZK even when the amount
of transactions is substantially lower. Moreover, the restriction of block size to S is a
throughput bottleneck if the transaction demand rises sufficiently. We therefore need
to investigate how to incentivize the underlying protocol to change the value of S
based on changes in transaction demand. This can only be achieved in a stable fashion
by taking into account the incentives inherent to changing the size of the block. Since
miner profits are based on transaction fees, they are directly proportional to predicate
size. We use this observation as the ‘driving force’ behind throughput adaptability.

5

Figure 1 A Decentralized Market for Throughput

Notes: This figure illustrates the key forces in our model. Exogenous variables are highlighted in blue,
endogenous equilibrium outcomes are highlighted in red.

3 Economic Model

The chart displayed in figure 1 represents the key forces in our model. We model a
decentralized market for throughput where transactions are verified in batches/blocks
that arrive at a random rateµ in each unit of time. Miners compete for the right to verify
an incoming set of transactions in exchange for transaction fees and block rewards.
They choose the profit-maximizing number of workers, among which to distribute
proofs to simultaneously verify block correctness and generate a PoW solution. In
equilibrium, all miners include the transactions offering the highest fees, up to block
capacity S.3 The probability that a miner gains the right to write the next block is
proportional to the number of computations that she performs. Free entry requires
that all miners make zero profits in expectation, and pins down the equilibrium number
of miners N.

Predicate size S corresponds to the number of transactions that can be verified in each
new block. Users arrive at the pool of pending transactions at rate λ and offer fees for
transaction verification. Transaction fees arise from a VCG auction, where users weigh
the cost of higher fees against a reduction in their expected wait time. In equilibrium,
average transaction fees t f depend on both block capacity (and thus predicate size S),
and on the level of demand λ.

Unlike standard markets, the level of supply - system throughput/block capacity S -

3In practice, miners may choose to include different transactions in each block. As we assume that
miners observe the same pending transactions at any given point in time and miners have incentives to
include transactions with higher fees, miners all aim to verify the same block of transactions.

6

cannot be directly chosen by miners, but is instead set by the protocol. The inability of
miners to choose both their computational cost and throughput poses a market failure
that leads to inefficient adjustments of system cost to changes in demand. To overcome
this issue, we model a system that implements periodic updates to predicate size in
accordance with an ex-ante specified update rule. Within this framework, we ask how
such an updating rule can be designed to ensure that throughput scales efficiently with
changes in demand.

3.0.1 Hash Rate, Predicate Size, and Pools

Miners compete for the chance to mine the next arriving block and collect the associated
mining rewards. To do so, miners distribute proof computations corresponding to
predicate size S to pools, and provide PoW in terms of proofs per second H to the
system. A miner employing n workers to solve proofs corresponding to a predicate
size S provides H proofs per second according to,

log H(n; S) = log U + σ log n − log S, (1)

where U is a technological constant. The parameter σ governs the returns to pool size n:
It captures the elasticity of the hash rate H with respect to pool size n, and can be thought
of as a parallelization coefficient. Consistent with existing performance benchmarks,
we assume that σ < 1.4 A value of σ = 1 would imply perfect conservation of work
in a parallel system of n workers, and as such, no higher value of σ is empirically
achievable.

As evident in equation (1), an increase in predicate size S reduces a pool’s hash rate for
any given pool size. Thus, an increase in S poses a cost to the system as pools have to
distribute proofs across more workers to maintain the same hash rate.

3.0.2 The Problem of Miners

Miners incur a cost cm · n per time unit to distribute proofs across n workers.5 Further,
miners incur fixed costs fm every period they maintain a mining pool. Both variable
and fixed costs are denominated in USD.

Miners compete for the chance to mine the next arriving block. In equilibrium, all
miners include transactions offering the highest rewards up to block capacity S. Total

4State-of-the-art distributive systems of SNARK proofs achieve σ ≈ 0.88 Wu et al. (2018).
5In practice, miners distribute and assemble proofs while workers solve small computational prob-

lems. The cost cm summarizes both margins.

7

rewards from mining are given by Rev + P · br, where Rev denotes fee revenue and
br block rewards. Transaction fees are proposed by users, and, thus, denominated
in USD. We specify Rev further below after having solved the problem of users. The
system exogenously regulates the size of the block reward , implying that the value of
br to miners depends on the exchange rate of the currency to USD, which we denote
by P.

As in PoW, the probability that a given pool is selected to mine the next block de-
pends on its hash rate relative to the aggregate hash rate of the system.6 Denot-
ing individual mining pools by i, the aggregate hash rate of the system is given by
H =

∑
i∈{Active Pools}Hi.

Taking predicate size S and the aggregate hash rateH as given, a miner i chooses pool
size ni to maximize expected profits π given by:

π (ni; S,H) =
H (ni,S)
H

(Rev + P · br) − cm · ni − fm, (2)

where H (n,S) is defined in equation (1).

In a Nash equilibrium, the optimal pool size n∗i solves,

n∗i = arg max
n
π (n; S,H) . (3)

The solution to this problem is given by:7

n∗i =
(
σ (Rev + P · br)

cm(S/U)H

)1/(1−σ)

. (4)

eq:optimalpoolsizeshowsthattheoptimalpoolsizen∗i is increasing in mining rewards, and de-
creasing in the variable costs of proof distribution cm, predicate size S, and market
competition captured by the aggregate hash rateH .

3.0.3 Entry and the Equilibrium Number of Miners

Anyone willing to incur the overhead cost fm is free to enter the system as a miner.
Miners enter until expected profits

6Chen et al. (2019) and Leshno & Strack (2019) show that proportional selection is the only allocation
rule that satisfies a set of desirable properties, e.g. anonymity, collusion-resistance, and sybil-resistance.

7When setting ∂π
∂ni
= 0, we assume that miners are small in the sense that they don’t internalize the

effect their computations have on aggregate hash rateH . Our qualitative results do not crucially depend
on this assumption.

8

eq:profits equal zero. Thus, a free entry condition pins down the number of active
mining pools N.

In a symmetric, equilibrium, all active miners employ the same number of workers,
n∗i ≡ n∗. Then, the aggregate hash rate is given byH = NH (n∗). Using equation (4), the
optimal pool size n∗ is given by,

n∗ =
σ
cm
·

Rev + P · br
N

. (5)

In equilibrium, the probability that a miner is chosen to mine the next block is pro-
portional to the number of active pools, Hi

H
= H

NH = 1/N. Substituting equation (5) into
profits given by equation (2) and imposing that expected profits equal zero upon entry,
the equilibrium number of miners equals,

N =
(1 − σ)

fm
· (Rev + P · br) . (6)

The equilibrium number of miners N is increasing in mining revenues and decreasing
in the fixed costs fm.

Miners include transactions that offer the highest transaction fees up to the capacity
limit. Intuitively, mining costs are increasing in predicate size S, so miners have no
incentive to verify less than S transactions. Further, miners can neither force others
into a coalition, nor have an incentive to form coalitions with the intent to temper with
transaction fees8 due to the presence of fixed costs.

3.1 Demand for Transactions and Determination of Fees

We now describe the problem of users, and characterize the equilibrium level of trans-
action fees. The demand side of the model closely follows Huberman et al. (2019).
Users wish to verify single transactions and are heterogeneous in the costs that veri-
fication delay poses for them. New users enter the pool of pending transactions at a
constant rate per time unit, and offer transaction fees for service. Users’ willingness to
pay arises out of the opportunity cost of delay.

3.1.1 Users

Users arrive at Poisson rate λ at each point in time. λ parametrizes the level of demand
by describing the rate at which the pool of pending transactions grows over time.

8For example, a large coalition may choose not to include transaction fees below a certain threshold.

9

An arriving user is identified by a wait cost c, which is drawn from a continuous
cumulative density function F(c) with domain C ≡ [0, c̄] ⊆ R+0 and probability density
function f (c). The expected benefit of using the system to a user endowed with wait
cost c and offering transaction fee t f is given by:

U
(
t f ; W, c

)
= ν − t f − cW

(
t f ; G

)
,

where ν > 0 is the value of a verified transaction to users9, and W
(
t f ,G

)
is the expected

wait time for a user posting fee t f . The wait-time W depends on the endogenous
distribution of transaction fees G(t f) posted by all users of the system.10

3.1.2 The Dependence of Fees on Wait Time

Each active user posts a fee t f so as to maximize utility, weighing the costs of higher
fees against the benefit of lower expected wait times. Standard arguments imply that
equilibrium transaction fees are a continuous, monotonous function of user wait-cost
t f (c) satisfying t f (0) = 0 and t f ′(c) > 0. Monotonicity implies that G

(
t f (c)

)
= F (c) .

Equilibrium transaction fees t f (c) solve the first order condition W′
(
t f |G

)
= − 1

c which
is equivalent to the following differential equation:

W̃′ (c|F) c f (c) = t f ′(c),

where W̃ directly maps wait cost into wait times and satisfies −W′(t f |G) = W′(c|F).11

Integrating and imposing as a boundary condition that users with no costs of delay
post a fee equal to zero, transaction fees can be fully expressed in terms of equilibrium
wait times:

t f (c) =
∫ c

0
c̃ f (c̃)W̃′ (c̃|F) dc̃. (7)

Inspecting equation (7) reveals that equilibrium fees have the externality correcting
property inherent to the Vickrey-Groves-Clark (VCG) auction mechanism.12 For our
purposes, the fact that offered transaction fees are socially optimal implies that none
of the potential inefficiencies present in the decentralized equilibrium arise from sub-

9In practice, users have an outside option and only participate if their utility from doing so exceeds
this outside option. Throughout the analysis, we assume that ν is sufficiently high so that users are
willing to participate.

10The assumption is that users know the distribution of wait times F and are assumed to antici-
pate others’ optimal behavior correctly. However, users do not observe the current pool of pending
transactions when submitting fee offers.

11Note that G
(
t f (c)

)
= F(c) implies G′(b(c))b′(c) = f (c). Thus W′(t f |G) =W′(t f |G) f (c)/b′(c).

12An externality arises as each user delays the verification of the transactions of other users. Despite
the fact that users do not internalize the cost that they pose on others, the VCG auction mechanism
incentivizes "truthful bidding," implying that the users with higher valuations submit higher bids.

10

optimal user behavior.

3.1.3 Wait Time

Blocks can process up to S transactions per time period, and arrive randomly at Poisson
rate µ. The equilibrium wait time depends on system congestion, which is given by
ρ ≡ λ/(Sµ) and captures the average number of transactions that can be processed
per time unit. ρ < 1 implies that while users may experience delays, the system will
eventually process all transactions.

To characterize the equilibrium wait time, we build on results derived in Huberman
et al. (2019), who show that for sufficiently high levels of block capacity S, wait times
depend solely on system congestion ρ.13 We restate this result in the following theorem.

Theorem 1 1. For any ρ ≡ λ/(µS) ∈ (0, 1) the equilibrium wait time for a user with delay
cost c, W(c; S, µ, λ) is given by:

W(c;ρ) =
µ−1

1 −
(
1 + α

(
ρF̄(c)

))
e−α(ρF(c))

, (8)

where F(c) ≡ 1− F(c) and α(x) is the real root of the algebraic equation e−α + xα− 1 = 0.

2. Equilibrium wait time is increasing and convex in congestion ρ and decreasing in user
wait cost c.

Users with higher costs of delay offer higher fees, and wait less for transaction verifica-
tion. Higher levels of system congestion ρ, in turn, increase wait times - and, therefore,
transaction fees - for all users. The key implication of Theorem 1 for our analysis is that
since wait times - and, therefore, transaction fees - are fully characterized by system
congestion ρ, equilibrium fees are stable at varying levels of demand λ only if the
system adjusts S so as to maintain a stable level congestion ρ.

3.1.4 Transaction Fees

Combining Theorem 1 and equation (7), we can derive the average equilibrium fee
revenue Rev per unit of time as function of block capacity S and system congestion ρ:

13Huberman et al. (2019) show wait times are appropriately approximated for S = 20. Block capacity
in Bitcoin is at around 2000. As outlined earlier, we expect our proposed protocol implementation to
be capable of handling a volume of transactions per block that outperforms Bitcoin by magnitudes.
We, therefore, feel comfortable working with the characterization of wait times in equation (8) for the
remainder of the analysis.

11

Rev
(
S, ρ

)
= S ·

∫ c̄

0
t f (c)dF(c) (9)

= S · ρ
∫ c̄

0

(
F̄(c) − c f (c)

)
W

(
c;ρ

)
dc ≡ S · ψ

(
ρ
)
.

ψ(ρ) in equation (9) is the average level of fees per unit of time that users pay for
service.14 Rev summarizes the optimal bidding behavior of users, and, thereby, how
changes in either block capacity S or demand λ affect the demand-side of the market.

The focus of our analysis is to understand how the system may induce an increase
in throughput in response to an increase in demand so as to incentivize miners to
scale proof production at constant per-transaction fee revenues. For this purpose,
the responsiveness of average fees ψ

(
ρ
)

with respect to changes in demand λ - or
generally changes in congestion ρ - is key. To this end, we define the elasticity ofψ(ρ) in

equation (9) with respect to ρ as ε
(
ρ
)
≡

∂ logψ(ρ)
∂ logρ ≡

ρ
ψ(ρ)

∂ψ(ρ)
∂ρ . ε

(
ρ
)

captures the percentage
increase in equilibrium fees in response to a percentage increase in congestion ρ. The
following theorem characterizes key properties of ε

(
ρ
)

and in particular shows that it
admits a uniform upper bound, independently of the underlying distribution of wait
cost F(c).

Theorem 2 The elasticity of equilibrium average transaction fees ψ
(
ρ
)

with respect to system

congestion ρ, ε
(
ρ
)
≡

∂ logψ(ρ)
∂ logρ , is bounded below by 1, increasing and convex in ρ. Further,

there exists ε
(
ρ
)

such that ε
(
ρ
)
≤ ε

(
ρ
)

for all ρ ∈ (0, 1) and any distribution of user wait cost
F(c).

Figure 2 plots the elasticity of average transaction fees as a function of system conges-
tion ρ.

3.2 Equilibrium at Fixed Predicate Size S

We characterize the mass of entrants and level of system difficulty in partial equilib-
rium, holding fixed the predicate size S.

14As we characterize steady states in a fee market where there is a constant flow of transactions in
and out of a system that eventually verifies all transactions and where all users participate, the integral
is taken over the entire domain of c.

12

Figure 2 Upper bound on the elasticity of equilibrium transac-
tion fees with respect to system congestion

Notes: This figure plots the uniform bound on the elasticity of equilibrium average fess given
in equation (9) with respect to system congestion ρ = λ/µS as a function of ρ on the x-axis.

3.2.1 Mass of active mining pools

A partial equilibrium for a given predicate size S and demand level λ is defined by the
condition that miners make zero profits in expectation upon entry.15 Using equation (6)
and the characterization of total mining fee revenues, the equilibrium number of miners
N at predicate size S, demand λ and nominal block rewards P · br is given by:

N (S, λ,P · br) =
1 − σ

fm
·
(
Sψ

(
ρ
)
+ P · br

)
. (10)

Predicate size S, demand λ and nominal block rewards P · br summarize the profit
incentives of miners. Adjustments in predicate size S, therefore, change the profit
incentives and entry behavior of miners. Cost-efficiency in a decentralized equilib-
rium crucially depends on whether adjustments of predicate size S can be optimally
calibrated to induce incentive-compatible equilibrium behavior of miners that is as if
miners internalized the externality that they pose on others through Nakamoto con-
sensus. In order to build up an intuition for our later results, it is useful to briefly
pause to discuss how adjustments in predicate size S shape profit incentives of miners
through the condition in equation (10).

15While this equilibrium is technically a steady-state - owing to the continuous entrance and exit of
users - we effectively treat it as a static equilibrium condition.

13

An increase in demand λ initially increases mining fee rewards through an increase
in equilibrium user fees ψ(ρ). This increases entry, the equilibrium number of miners,
and the computational cost of the system without adding benefits for system capacity
or users. To restore cost-efficiency, a subsequent increase in predicate size S has to
direct additional cost incurred by the system toward increases in throughput. Our
results imply that competition by miners ensures that this is achieved by additional
entry and lower success probabilities for each active pool.

3.2.2 Difficulty

As opposed to for example Bitcoin, difficulty in our model depends only on the total
number of proofs computed per time unit.16 As pools are symmetric, solely distribute
one proof computation among pool participants and operate at hash rate H, system
difficulty is given by:

d = log
(
µ ×H ×N

)
. (11)

By using the equilibrium expression for the number of miners and the solution to the
miner’s problem, we can express difficulty as:17

d = log
(
β ×

Sψ(ρ) + P · br
S

)
, (12)

where β ≡ µU
(
σ
cm

)σ (1−σ
fm

)1−σ
is a constant.

The inability of miners to autonomously adjust cost and throughput upwards as de-
mand rises causes rising levels of system congestion, resulting in high wait times and
fees for users, and costly increases in mining activity at no increase in throughput as
demand rises. In light of this, our protocol design’s core innovation is to provide an
"updating rule" for predicate size S and, therefore, block capacity that correctly infers
changes in demand. While demand λ is not directly observable, equation (12) high-
lights that difficulty is a sufficient statistic for changes in demand when block rewards
are zero. In this case, changes in equilibrium difficulty are proportional to changes in
average transaction fees, which in turn depend solely on the congestion parameter ρ.

16This is because the solution of a single proof commits to the nonce before distributing computation
to the pool. This means that, unlike the distribution of double-SHA computations in Bitcoin (that
effectively break up nonce generation among pool participants), here the nonce is set by the operator,
and all computation forwarded to workers is nonce-specific.

17Note that the solution to the miners’ problem implies that equilibrium hash rates are given by
U

(
σ fm

(1−σ)cm

)σ
/S.

14

3.3 Dynamic Throughput Adjustment and Equilibrium Predicate

Size S

We endow the system with the ability to periodically adapt throughput S according to
a pre-specified updating rule.

Definition 1 Let X be a vector of statistics. A law of motion for throughput S is a function f
such that:

St+1 = f (St,St−1, ...; Xt,Xt−1, ...) . (13)

Given an updating rule for predicate size S, we can define a dynamic equilibrium and
the notion of a steady-state.

Definition 2 Given a starting predicate size S0, level of demand λ and nominal block rewards
P ·br, an equilibrium is a sequence of predicate sizes {St}t=1,2,... such that at each t, (i) transaction
fees posted by users satisfy equation (9), (ii) the equilibrium number of miners Nt satisfies
equation (6) and (iii) the law of motion for S is given by equation (13). A steady state is reached
when changes in predicate size S converge to 0.

So far, we have analyzed how the optimal behavior of miners and users determines
fees and the energy usage of the system. In the following, we utilize our framework to
analyze how transaction fees and system congestion respond to demand shocks under
different pre-specified laws of motion for throughput.18

4 Stabilizing Congestion

Unlike standard markets, the level of supply is not directly chosen by miners, but,
instead, is set by the protocol through the size of the predicate S. This results in cost
inefficiencies. Intuitively, absent changes in S, an increase in demand λ raises system
congestion ρ = λ/(µS). Ultimately, this increases the computational costs of the system
without lowering the costs to users. In this section, we show that suitable updates
of throughput help overcome this limitation. Specifically, as equilibrium difficulty
encodes changes in demand, we show how to design an updating rule for the predicate
size S in accordance with changes in difficulty so as to induce cost-efficient adjustments
of throughput in response to changes in demand.

18Definition 2 defines an equilibrium taking both block rewards Pbr and demand λ as given. The
underlying assumption is therefore that adjustments in predicate size S occur sufficiently frequently -
or equivalently that the length of periods dt is sufficiently small - for the system to reach steady states
between changes in demand or block rewards.

15

To develop intuition for our result, note that the net benefit produced by the system can
be characterized in terms of the value of transaction verification across all consumers,
wait times as well as the the costs of energy used by pools:

νλ −Average Wait-time (λ,S) − Total Energy Cost (S) .

Free entry implies that the total energy cost of the system must equal mining rewards.
Abstracting from block rewards, total mining revenues increase at least proportionally
to system congestion, as do average wait times. To ensure that the net benefits of the
system do not decrease as demand λ increases, changes in demand λ should be offset
by proportional changes in S. It is easy to see that this would imply that the benefit of
the system would remain invariant to how many people use it. In conclusion, an ideal
adjustment of predicate size S to changes in difficulty keeps wait times and congestion
ρ = λ/(µS) constant, allowing for proportional growth in demand and supply.

4.1 Floating Difficulty Level

Consider a policy rule that upon observing a change in difficulty between perdiods
t − 1 and t, updates predicate size S in t + 1 as follows:

log (St+1/St) = γ (dt − dt−1) . (14)

We focus on analyzing transitions between equilibrium steady states in response to
changes in demand when block rewards are zero. We analyze constraints on the up-
dating parameter γ stemming from two objectives. First, γ should ensure convergence
of the system to a new steady state after a demand shock. Second, a shock to demand
should yield minimal change s in congestion.

Assume the system is in steady state with predicate size S0 and congestion ρ∗ = λ0/µS0.
We consider a change in demand d logλ ≡ log(λ1)− log(λ0) from λ0 to λ1. The object of
interest is the elasticity of steady state system congestion with respect to this demand
shock, d logρ∗

d logλ , which measures by how much steady state system congestion changes
in response to a change in demand. In the following proposition, we summarize the
properties of this object.

Proposition 1 Consider an initial steady state {S0, λ0} and assume that block rewards are
equal to zero. Under a floating difficulty regime, upon a change in demand d logλ ≡ log(λ1)−
log(λ0),

1. the system converges to a new steady state if γ < 1
ε(ρ) , where ε

(
ρ
)

denotes the upper

16

bound on ε
(
ρ
)

derived in Theorem 3.2. and ρ ≡ max
{
λ0/µS0, λ1/µS0

}
,

2. if γ ∈
(
0, 1

ε(ρ)

)
, then steady state changes in system congestion are strictly less than

proportional to changes in demand: d logρ∗

d logλ ∈
(

1
2 , 1

)
.

The first part of Proposition 1 shows that dynamic stability imposes a feasibility re-
striction on the rate at which predicate size (and thus throughput) can be increased in
response to some demand shock. For γ > 1/ε

(
ρ
)
, changes in predicate size would be

large enough at every step to ensure that the system diverges from equilibrium. Thus,
the value of γ needs to be low enough so that this is prevented. Note that this imposes
a new trade-off in efficiency: a lower γ ensures that higher demand shock levels can be
‘absorbed’ without instability, but also means that the system will take longer to arrive
at equilibrium (as predicate updates are less sensitive to changes in difficulty).

The second part of the above result demonstrates that such a record keeping system
with γ > 0 does strictly better than one where S is fixed. This is due to the upper
bound on the elasticity of steady state system congestion, which shows that congestion
will increase at a fraction of the non-adaptive case. Although they will increase com-
paratively less, it is immediate that transaction fees remain unbounded: an arbitrary
sequence of positive demand shocks will always increase difficulty arbitrarily high,
pushing up equilibrium fees as well. Further, to ensure dynamic stability at possibly
high levels of congestion requires sufficiently low γ, which impedes the speed of con-
vergence. In fact, the only choice for γ that ensures dynamic stability under a floating
difficulty regime as λ→∞ is γ = 0.

In the traditional Bitcoin protocol, an unbounded difficulty parameter is required due
to the security benefits that it provides. This is by making the cost of disrupting the
network scale with d. Note, however, that an increase in difficulty here is not necessar-
ily required for system security: the costs of participation are increasing with respect
to both difficulty and predicate size. This means that ‘difficulty’ in the Bitcoin sense
is actually an increasing function g(S, d) here, as both of these parameters are mono-
tonically increasing with respect to costs per unit time. This motivates the question of
whether constant equilibrium transaction fees can be achieved without compromising
system security.

4.2 Pegged Difficulty Level

Consider a policy rule that updates predicate size S as follows:

log
St+1

St
= γ (dt − d∗) , (15)

17

where d∗ is a pre-specified level of difficulty.

Again, consider a demand shock d logλ. The following proposition draws out con-
ditions on the update parameter γ under which the system maintains a stable steady
state level of congestion ρ∗ under zero block rewards.

Proposition 2 Assume that block rewards are equal to zero, and difficulty is pegged to d∗.
Denote ρ∗ ≡ ψ−1 (exp(d∗/β)

)
with β given in equation (12). Under a pegged difficulty regime,

upon a change in demand d logλ ≡ log(λ1)− log(λ0) yielding an initial change in congestion

from ρ∗ to ρ, congestion converges back to ρ∗ for any γ ∈
(
0, 2

ε(ρ)

)
, where ρ ≡ max{ρ∗, ρ}.

Equation (15) allows for the a priori selection of some acceptable congestion level ρ∗

by fixing (or ‘hardcoding’) the corresponding d∗ in the update rule. In this case, the
system will increase predicate size S accordingly until system difficulty drops back to
d∗. Therefore, the long-term equilibrium effect on congestion is zero. Such a system
has the desirable property that transaction fees at equilibrium will always revert to
constant: the effects of any demand shock will be fully compensated by changes in
predicate size, which will revert transaction fees to their previous equilibrium level.

Technically, the crucial change that permits such desirable behavior lies in the ‘decou-
pling’ between the sufficient statistics for system security and demand in the above
update rule. Indeed, the costs of participation rise monotonically with S, while costs
of transactions are only functions of d. Thus, by ensuring that the system will always
update S as a reaction to changes in demand so as to fully compensate for any changes
in d, we are able to keep equilibrium transaction fees constant regardless of the demand
shock as long as γ is low enough.

4.3 Positive Block Rewards

We conclude our analysis by briefly discussing how positive block rewards, br > 0,
affect our key results. In the presence of positive nominal block rewards, miners’ profit
incentives are not fully determined by mining fees and therefore entry and changes in
difficulty only are an imperfect measure of demand. Consequently, changes in demand
cannot be fully absorbed through proportional scaling of throughput. Further, changes
in nominal block rewards - either due to an increase in P or a (scheduled) decrease
in block rewards br - will cause changes in throughput that are (potentially) detached
from fundamental user demand. While nominal block rewards serve as a subsidy to
sustain mining incentives at low levels of initial demand, here they pose a cost in terms
of economic efficiency.

18

5 Conclusion

We provided a protocol specification for a decentralized record-keeper that addresses
economic cost efficiencies from correctness verification, PoW security guarantees and
throughput adaptability. Drawing on recent developments aimed at optimizing the
scaling of distributed payment systems, we have shown how to link throughput to
an observable system statistic that summarizing changes in user demand. Our work
shows to autonomously regulate incentives of system participants so as to ensure cost-
efficient scaling to user demand. We believe that an implementation of this approach
is feasible given recent advances in the computer science literature concerned with the
scaling of decentralized record-keepers.

References

Abadi, Joseph andMarkus Brunnermeier, ‘Blockchain Economics.’ NBER Working
Papers 25407, National Bureau of Economic Research, Inc, 2018.

Back, Adam et al., ‘Hashcash-a denial of service counter-measure.’ 2002.

Ball, Marshall, Alon Rosen, Manuel Sabin and Prashant Nalini Vasudevan,
‘Proofs of Useful Work..’ IACR Cryptology ePrint Archive, 2017, p. 203, 2017.

Basu, Soumya, David Easley, Maureen O’Hara and Emin Sirer, ‘Towards A Func-
tional Fee Market For Cryptocurrencies.’Technical report, 2019.

Budish, Eric, ‘The Economic Limits of Bitcoin and the Blockchain.’ working paper,
2018.

Buterin, Vitalik, ‘Ethereum: A next-generation smart contract and decentralized
application platform.’ 2014, Accessed: 2016-08-22.

, On-chain scaling to potentially 500 tx/sec throughmass tx validation., 2018 (accessed June
12, 2020).

Carlsten, Miles, Harry Kalodner, S Matthew Weinberg and Arvind
Narayanan, ‘On the instability of bitcoin without the block reward.’ In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 154–167, 2016.

Chen, Xi, Christos Papadimitriou and Tim Roughgarden, ‘An Axiomatic Ap-
proach to Block Rewards.’ In Proceedings of the 1st ACM Conference on Advances in

19

Financial Technologies, AFT ’19, p. 124–131, New York, NY, USA: Association for Com-
puting Machinery, 2019, DOI: http://dx.doi.org/10.1145/3318041.3355470.

Dwork, Cynthia andMoni Naor, ‘Pricing via processing or combatting junk mail.’
In Annual International Cryptology Conference, pp. 139–147, Springer, 1992.

Huberman, Gur, Jacob Leshno and Ciamac C. Moallemi, ‘An economic analysis
of the Bitcoin Payment System.’ Columbia Business School Research Papers 17-92,
Columbia Business School, 2019.

Kattis, Assimakis and Joseph Bonneau, ‘Proof of Necessary Work: Succinct State
Verification with Fairness Guarantees.’ Cryptology ePrint Archive, Report 2020/190,
2020, https://eprint.iacr.org/2020/190.

King, Sunny, ‘Primecoin: Cryptocurrency with prime number proof-of-work.’ July
7th, 1 (6), 2013.

Leshno, Jacob and Philipp Strack, ‘Bitcoin: An Impossibility Theorem for Proof-
of-Work based Protocols.’ Cowles Foundation Discussion Papers 2204R, Cowles
Foundation for Research in Economics, Yale University, 2019.

Nakamoto, Satoshi, ‘Bitcoin: A peer-to-peer electronic cash system.’ 2008, http:
//bitcoin.org/bitcoin.pdf.

Thum, Marcel, ‘The Economic Cost of Bitcoin Mining.’ CESifo Forum, 19 (1), pp. 43–45,
2018.

Wu, Howard, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa and Ion
Stoica, ‘{DIZK}: A Distributed Zero Knowledge Proof System.’ In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pp. 675–692, 2018.

A Proofs

Theorem 1. See Lemma 14 in Huberman et al. (2019). □

Theorem 2. Letψ
(
ρ
)
= ρ

∫ c̄

0

(
F̄(c) − c f (c)

)
W

(
c, ρ

)
dc. First, the derivative of the wait time

is equal to:
∂W

(
ρ
)

∂ρ
= e−α(ρ)α(ρ)3W(ρ)3.

20

http://dx.doi.org/10.1145/3318041.3355470
https://eprint.iacr.org/2020/190
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Therefore, the elasticity is given by:

ρ

W
(
ρ
) ∂W

(
ρ
)

∂ρ
= ρe−α(ρ)α(ρ)3W(ρ)2. (A.1)

Evidently, this elasticity is increasing in ρ. Thus, the elasticity of average transaction
fees is given by:

d logψ
(
ρ
)

d logρ
= 1 + ρ

∫ c̄

0
ωcF̄(c)e−α(ρF̄(c))α(ρF̄(c))3W(ρF̄(c))2dc,

where ωc ≡
F̄(c)−c f (c)W(c,ρ)∫ c̄

0 (F̄(c)−c f (c))W(c,ρ)dc
. Given that α(ρ)→ ∞ as ρ→ 0, a uniform bound on this

elasticity is given by:

d logψ
(
ρ
)

d logρ
≤ 1 + ρe−α(ρ)α(ρ)3W(ρ)2

≡ ε
(
ρ
)
.

□

Proposition 1. Using the recursive structure of the system, the elasticity of steady state
congestion with respect to a demand shock is:

d logρ∗

d logλ
= 1 +

∞∑
t=1

(
−γ

)t

 t∏
k=0

ε
(
ρt

) .
Using Theorem 2, the proposition follows from standard properties of geometric sums.

□

Proposition 2. Under a pegged difficulty regime, the change in steady state congestion
in response to a demand shock and an initial level of congestion ρ∗ can be written as
ε
(
ρ∗

)∏∞

t=1
(
1 − γε

(
ρt

))
. The result then follows from Theorem 3.2. permitting to bound

all terms in the product above by 1. □

21

	Introduction
	Operating at Maximal Block Size Smax
	From Adaptability to Stability

	Our Contributions

	Preliminaries
	Economic Model
	Hash Rate, Predicate Size, and Pools
	The Problem of Miners
	Entry and the Equilibrium Number of Miners

	Demand for Transactions and Determination of Fees
	Users
	The Dependence of Fees on Wait Time
	 Wait Time
	 Transaction Fees

	Equilibrium at Fixed Predicate Size S
	Mass of active mining pools
	Difficulty

	Dynamic Throughput Adjustment and Equilibrium Predicate Size S

	Stabilizing Congestion
	Floating Difficulty Level
	Pegged Difficulty Level
	Positive Block Rewards

	Conclusion
	Proofs

